
Asterisk Manager
and GUI Interfacing

in Large Environments

Presented by Matt Florell
Chief Architect of the astGUIclient project

Manager API and GUI Topics
 Why use the manager API?
 Manager API capacity
 Multi-server Environments
 Central Queue vs. Individual Connections
 How a Central Queue Operates
 Why use MySQL for the Central Queue?
 Real-World Example of Queue in Action
 astGUIclient Design and Functionality
 Capacity Limits and Trade-offs
 The Future

Why Use the Manager API?
 Allows for actions that are either hard or im-

possible to program in a dialplan or AGI
 Start/stop recording of existing call
 Place calls from within meetme conferences
 Originate call to an AGI and an outside number
 Redirect existing calls to different channels

 Allows for Complex Client Applications
 Windows and X-based GUI applications

 Receptionist consoles
 ACD/inbound CRM applications and popups
 Outbound/predictive/auto-dialing call center applications

 Web-based applications
 Initiating conferences, remote worker telecommuting
 Real-time usage reports

Manager API Capacity
 Greatly dependent upon Asterisk and serv-

er load
 At high loads data flow can “pause” on the

manager interface for up to several sec-
onds

 More manager connections means more
chance for pauses no matter the load

 Customizing manager.conf for each con-
nection's needs helps reduce unneeded
data transfer and reduces strain on system

Multi-Server Environments
 Large installations that have high-capacity

phone usage may need multiple Asterisk
servers to run optimally, adding complexity
to Manager API usage

 A high-end server running Asterisk can
handle 50 concurrent SIP to Telco conver-
sations reliably

 Options for server to server connections
 IAX – Native Asterisk connection
 PRI crossover – T1 to T1, no transcoding
 SIP – harder to setup, wide VOIP standard

Central Queue vs.
Individual Connections

 Central Queue:
 Adds delay in execution (< 0.5 sec)
 Creates a single point of failure
 Easily handles interfacing with multiple Asterisk servers
 Easier/more organized way of keeping track of calls
 Only needs one local connection for output of all activity
 Can use new connection for each initiation of a new

action preventing action backlogs
 Individual Connections:

 Can load server more
 Not as fault tolerant
 Must follow all call progresses for each connection

meaning more work for client app
 More prone to lock up or freeze

How a Central Queue Operates
Server-side Operations

 Elements running on the Asterisk server
 Channel state updater – This does nothing but

ask for the list of live channels on the Asterisk
server(Show Channels) a hundred times a minute
to keep updated list of live channels

 Action sender – Constantly checks for new Ac-
tions to be sent to Asterisk servers and starts
child processes to send them to the Manager In-
terface

 Action Listener – Looks for the Actions that were
sent with the sender in the Manager output and
updates their status in the Queue

How a Central Queue Operates
Client-side Operations

 Client app can grab the list of live channels at
any time

 Client can initiate new actions and look for a
response from Central Queue without ever
interfacing with the Asterisk server

 Client does not need to keep active connec-
tion with the Central Queue like it would with
the Manager Interface, making development
platform options more flexible

How a Central Queue Operates
Call-Flow Example

 Here is a flow of how a call is initiated
through a Central Queue

1) Client connects to Queue and inserts parameters
of the call to be placed

2) Server sender app sees new Queue entry and
initiates child process to connect to the Manager
and send the new Action

3) Server listener app sees output from Manager
and matches it up to the Queue entry and up-
dates that record's status

4) Client looks at Queue record it sent and sees that
the call went through

Why Use MySQL for the
Central Queue?

 Speed – MySQL is a very fast system for in-
formation exchange

 Compatibility – Client libraries are widely
available and are very light-weight, and
server runs on UNIX and Win32

 Capacity – You can have several hundred
concurrent connections on a single MySQL
server

 Ease of use – MySQL is simple to Set up,
Administrate and Write custom Queries for

Real-World Example of a
Central Queue in Action

 Corporate and Call Center Environment with over 150
Employees

 Five Asterisk servers with 16 T1s connected
 One MySQL server acting as Central Queue
 150 SIP telephone devices
 Inbound/Outbound telemarketing with custom GUI client

apps for CRM and auto-dialing
 Local and Remote Customer service and Sales Agents

using Web interface for call manipulation and information
exchange

 Real-time stats and reports on system operation and
agent performance

 Receptionist console and corporate console with click-to-
record and click-to-conference

astGUIclient functionality

 List live channels
 Recording
 Blind Monitoring
 Voicemail Transfer
 Internal Transfer
 External Transfer
 Call Parking
 Forced Hangup
 Conferencing with up to
six external channels
 List of recent calls out
 Click to check voicemail
 Inbound call popup

VICIDIAL screenshot

 Dial by list
 Call Recording
 Third party conference,
transfer and drop
 DTMF macros
 Call Parking
 Custom on-hold music
 Click-to-dial or predic-
tive dialing
 Web-based closers can
be local or remote
 Time zone dialing re-
striction available

Adminsitration
screenshot

Reports
screenshot

Capacity Limits and Trade-offs
 Example Central Queue handles:

 Over 100,000 sent Manager actions daily
 Over 30,000 calls in and out daily
 Over 400 concurrent Asterisk channels
 Five live Asterisk servers
 120 connected client applications

 Trade-offs of using Central Queue:
 Only Manager traceable tag is “CallerID” which is a

big negative especially for PRI users with
customizable CallerID out

 Central Queue is a single point of failure
 Slight delay of action execution, not very notice-

able

The Future
 Requested new definable tag for Manager

Output “CallLabel” that would act just like
CallerID to be able to use it for the reason it
was meant to be used

 Research and testing into what causes
Asterisk Manager Interface pauses at high
loads

 Possibly a more robust Manager interface
that allows for direct interaction with a
channel, such as DTMF collection, from
within the Manager API

